

Transient Burning Rate Model of Solid Propellant in Electrothermal-Chemical Launch

Reporter: Yanjie Ni

Institute: National Key Laboratory

of Transient Physics

- 1 Introduction
- 2 Experiments
- 3 Theory
- 4 Simulations
- 5 Conclusions

1 Introduction

Reduce the ignition delay time
 Improve the ignition uniformity

1 Introduction

Control the pressure
 Improve the projectile muzzle kinetic energy

❖ 4/7 high-nitrogen solid propellant

2.1 Closed bomb experiments

2.1 Closed bomb experiments

The closed bomb volume is 356cm³. The loading density is 0.249g/cm³.

No.	ignition	U_0/kV	
1	conventional	-	
2	conventional	200	
3	plasma	8.3	
4	plasma	10	
5	plasma	10.1	

Test No.3 and No.4 at the center of the closed bomb

Test No.5 at the exit of the plasma generator

2.1 Closed bomb experiments

Reduce ignition time

Improve the pressure

No.	t _{ig} /ms	tend/ms	p _m /MPa
1.4	1.604	5.05	298
2	1.673	4.95	3 <mark>00</mark>
3	0.261	2.93	318
4	0.197	2.44	319
5	0.167	2.16	329

2.1 Closed bomb experiments

 $\mathrm{d}p/\mathrm{d}t \propto P_{\mathrm{e}}$

 $dp/dt \propto 1/\Delta L$

2.2 ETC launch experiments

No.	t/µs	U ₀ /kV
1	0, 0, 470, 470	9.448, 9.364, 9.59, 9.938
2	0, 0, 250, 500	9.326, 9.281, 10.029, 9.979
3	0, 250, 500, 500	9.497, 9.378, 10.184, 10.498
4	0, 250, 250, 500	9.392, 9.942, 9.805, 8.775

2.2 ETC launch experiments

Improve the projectile muzzle velocity

No.	E _{pl} /kJ	p _m /MPa	$v_{\text{proj}}/\mathbf{m} \cdot \mathbf{s}^{-1}$
1	191. <mark>6</mark>	441	2085
2	182. <mark>4</mark>	446	2086
3	200.4	438	2088
4	220.6	452	2123

Change the input electrical energy

2.2 ETC launch experiments

Influencing factors:
plasma
propellant burning progress
projectile motion

3 Theory

3.1 Closed bomb model

The gas phase state equation

$$p\left[V_0 - \frac{m}{\rho_p}(1 - \psi(t)) - \alpha m\psi(t) - \alpha_{ig}m_{ig}(t)\right] = T(Rm\psi(t) + R_{ig}m_{ig}(t))$$

Energy conservation equation

$$(1-c_1) f m \psi(t) + f_{ig} m_{ig}(t) + (k-1)c_{pl} E_{pl}(t) = T(R m \psi(t) + R_{ig} m_{ig}(t))$$

3 Theory

3.2 0D internal ballistics model

$$\begin{cases} \psi = \begin{cases} \chi Z(1 + \lambda Z + \mu Z^2) & (Z < 1) \\ \chi_s Z(1 + \lambda_s Z) & (1 \le Z < Z_b) \\ 1 & (Z \ge Z_b) \end{cases} \\ v = \frac{dl}{dt} \\ Sp = \varphi m \frac{dv}{dt} \\ p[V + V_0 - \frac{\omega}{\rho_p} (1 - \psi) - \alpha \omega \psi] = f \omega \psi - \frac{\theta \varphi m v^2}{2} + \theta E_{pl} \end{cases}$$

3 Theory

3.3 Burning rate law

$$u = u_1 p^{n_1}$$
 Plasma P_e

$$u = u_1 p^{n_1} (1 + \beta_e P_e)$$

$$u = u_1 p^{n_1} \left(1 + \frac{\alpha(t) n_1}{u_1^2 p^{2n_1 + 1}} \frac{\mathrm{d}p}{\mathrm{d}t} \right) (1 + \beta_{\mathrm{e}} P_{\mathrm{e}})$$

4.1 Closed bomb simulations

$$\sigma_{Woodley} = 4.325 \text{MPa}$$

$$\sigma_{transient} = 4.294 \text{MPa}$$

$$\beta_{\rm e} = 0.005 {\rm MW}^{-1}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (p_{sim}(i) - p_{test}(i))^{2}}{n}}$$

4.1 Closed bomb simulations

$$\sigma_{Woodley} = 9.312 \text{MPa}$$

$$\sigma_{transient} = 4.91 \text{MPa}$$

$$\sigma_{Woodley} = 13.506 MPa$$

$$\sigma_{transient} = 5.715 \text{MPa}$$

dp/dt

at the beginning of the ignition after the electrical discharge

4.2 ETC launch simulations

$$\sigma_{Woodley} = 25.47 \text{MPa}$$

$$\sigma_{transient} = 23.87 \text{MPa}$$

$$\sigma_{Woodley} = 25.75 \text{MPa}$$
 $\sigma_{transient} = 24.01 \text{MPa}$

4.2 ETC launch simulations

 $\sigma_{Woodley} = 24.44$ MPa

 $\sigma_{transient} = 22.01 \text{MPa}$

 $\sigma_{Woodley} = 25.16 MPa$

 $\sigma_{transient} = 24.71 \text{MPa}$

4.2 ETC launch simulations

The pulse current duration is about 1ms.

No.	MSE(Woodley) within 1.2ms/MPa	MSE (transient) within 1.2ms/MPa	v _{proj} (Woodley)/ m/s (relative error)	v _{proj} (transient)/ m/s (relative error)
1	30.09	23.06	2104(0.91%)	2092(0.34%)
2	29.11	23.61	2111(1.20%)	2099(0.62%)
3	22.03	15.46	2099(0.53%)	2091(0.14%)
4	22.88	20.55	2137(0.66%)	2126(0.14%)

 $\sigma_{Woodley}$ decreases only slightly or increases

 $\sigma_{transient}$ decreases

5 Conclusions

- The pressure gradient changes rapidly with plasma.
- During the ignition time, the pressure gradient can be another important factor to analyze the influence of the plasma.
- The simulation accuracy can be improved by transient burning rate with EGGR coefficient and pressure gradient.

